飞行汽车的股票是什么,吉利三大海外并购事件是哪三件
来源:整理 编辑:双城财经 2022-12-30 18:04:45
1,吉利三大海外并购事件是哪三件
吉利海外三大并购事件应该是收购沃尔沃乘用车、入股戴姆勒奔驰事件。吉利海外收了沃尔沃轿车、英国锰铜(英国出租车)、dsi(变速箱生产商,已转手卖给双林)、宝腾路特斯(宝腾49.9%路特斯51%)、terrafugia(美国飞行汽车公司)、沃尔沃集体(ab volvo,造卡车、船舶、工程车等等,8.2%股权、15.6%投票权)、戴勒姆(奔驰母公司,9.69%股份,有表决权)
早期三大是锰铜、沃尔沃、dsi,现在不好说了
2,吉利控股持有哪些股票
沃尔沃轿车volvo cars沃尔沃商用AB volvo马来西亚宝腾路特斯澳大利亚DSI(变速箱厂,10%,那90%卖给双林了)美国太力(Terrafugia)公司(制造飞行汽车的)戴勒姆(奔驰母公司)不要太迷信自己的看线技术和操盘心态!好股票就底部买入,长线持有。尽量不做短差,因为事实证明要选到好股在相对底部不难,大不了就是空仓等待,总会等到大跌后逢低建仓;但是要做好短差太难了!常常赚了点小钱就走了,再买时股价却高高在上了!
3,空军地勤好不好
1.检修飞机,养护 2.飞机调度,安排飞机飞行 3.给飞机挂弹,加油 4.给飞机导航 总的来说,地勤就是为飞机安全飞行服务的 飞行员要出去执行什么任务, 地勤首先要保证飞机能安全的飞, 第二要保证飞机有足够燃油、弹药 答案补充 ,空军地勤分为机务保障兵、然后就是航材管理股、油料股、军械股、汽车连、通讯站、场务连、场站连。其中机务保障兵的地位仅次于飞行员,新兵连有6个月,前三个月和其他兵种一样都是训练,后面三个月就是学习机务保障技能,又分为四个专业,机械、军械、特设、无线电。一般说空军地勤就是指机务兵,机务兵下连后还会由老兵师傅带教一段时间才能放单自己独自维护飞机,生活嘛相对于其他兵种舒服一些。训练少,一般就是检查飞机,就是刚开始背飞机上的各个电门、开关用途,难背,呵呵空军地勤(包括陆航地勤、海航地勤)分为两种 一种是真正意义上的地勤:机务,负责飞机的保养、维修、检测 另一种是广义上的地勤,实际上该属于后勤保障类的: 通信、:负责飞行时的通信保障 气象、:负责监测天气情况 导航、:负责飞机导航工作 四站、:负责给飞机加气、加压、充电 警卫、:负责机场警卫 军需、:负责后勤供应 营房、:负责住房 场务:负责机场跑道维护 军械:负责飞机航炮等弹药管理 航材:负责飞机耗材管理 汽车:负责牵引 油料:负责加油 卫生:负责医护 工作上面都比较轻松,飞行的时候忙,不飞行的时候闲
4,世界十大预言是哪个 1
预言一 宇宙寿命还有240亿年美国斯坦福大学天体物理学家安德雷·林德预言,宇宙目前只度过了其生命的1/3,还是个“壮小伙”,刚过青春期,还能存在240亿年左右。 预言二 银河于136亿年前诞生德国天文学家说,银河系中一些最古老的星体已有134亿多年的高龄。据此推测,银河大约在136亿年前就诞生了。 预言三 21世纪末人类只能住南极英国政府首席科学顾问戴维·金认为,如果人类不控制石油等燃料的使用,到2100年,亚洲、欧洲、南美、非洲、澳洲等大陆的温度将急剧上升,人类只能栖息在南极。 预言四 25年后驾“空中飞车”兜风美国国家航空航天局和波音等公司的科学家已经在研制可以飞行的汽车。科学家预言,这种“空中飞车”要投入到千家万户使用,需要25年的时间。 预言五 女人百年后比男人跑得快英国研究者宣布,150年后100米赛跑女子组的冠军成绩为8.079秒,而男子组的冠军为8.098秒,世界上将首次出现女人跑得比男人快的盛况。这样在2156年奥运会上,100米赛跑女子的速度将首次超过男子的速度。 预言六 东京、伦敦、纽约将消失在去年全球气候变化学术会议上,有科学家指出,气候变暖将使海水水位上升,伦敦、纽约、东京等知名城市都将被淹没,从地球上消失。 预言七 20年内人类收到外星人信息美国天文学家绍斯塔克预言,在10到20年的时间里,人类就可能捕捉到银河系中的智慧生命发出的无线电信号,接收到外星人信息。 预言八 10年内“基因武器”研制成功英国医学协会去年发表报告说,基因研究在10年之内能够获得的成果是新型而骇人的生物武器,足以用于种族清洗。 预言九 3年后20万美元游太空英国著名冒险家、维珍航空老板布兰森宣布,2007年,他将推出全球首创的太空旅程,预计5年便可将来3000多名游客送上太空。 届时漫游太空将不再是宇航员和超级富豪的专利,任何人只需付出约20万美元便可飞出我们生活的地球。 预言十 20年后人类可获长生不老术有科学家认为,生物免疫药物的广泛使用将使人的寿命延长10年至15年,而美国著名未来学家库兹威作出了更加惊人的预言:抗衰老研究在10年内可望从老鼠身上获得重大成果,人类可望在20年内实现自古以来就孜孜以求的长生不老的梦想。(王辉)(来源:华夏时报)据美国《生活科学》杂志报道,备受影迷关注的灾难片《2012》即将上映,有关古玛雅人历法以及世界末日预言的传闻也已经在大街小巷传播开来。这个时候,有必要回顾一下曾经出现过的并且一度被杞人忧天者信以为真的末日预言。 毫无疑问,所有这些世界末日的预言都以失败告终。绝大多数预言世界末日的人都从宗教的角度出发,一些没有宗教信仰的人竟然也对未来充满恐惧。显而易见,所有末日预言都拥有一个共同之处,那就是从未变成现实。以下是十大没有兑现的世界末日预言: 发不出啊 英国宇宙学家马丁· 里在他即将出版的新书《最后的世纪》中预言,地球在未来200年内将面临十大迫在眉睫的灾难,人类能够幸免的机会只有50%。 一、粒子实验可以吞噬地球<> 粒子实验 科学家通过粒子加速器使粒子达到光速后,互相进行碰撞,来研究微观世界的能量定律。由于被研究的物质是如此之小,人类也许从不担 心粒子会对人类形成什么威胁。但是最近,一些严肃的科学报告指出,在美国长岛的粒子加速器实验或相对论重离子碰撞实验,可能会产 生一个微型黑洞,它将慢慢吞噬地球上的一切物质,包括地球。 <> 经常有报道称,计算机的速度又达到了每秒多少亿次,一些科学报告甚至认为,到20 30年,计算机或机器人将拥有和人类大脑一样的储存容量和处理速度,甚至能完全代替人类思考。科学家甚至预言,即使是无意识状态 下的机器人,同样也能对人类构成威胁。 <> 在20世纪60年代,随着抗生素和抗滤过性病原体的发明,人类充满信心地认为我们已经永远征服了各种传染疾病,所有病毒都可以被 抗生素杀死。不幸的是,更多的病毒开始转变它们的基因以抵抗抗生素的作用。到现在为止,让医学家们束手无策的病毒不减反多。 基因工程走得更远,人类已经可以通过修补DNA改变生物体,用高科技改变一些动物或植物的遗传基因,人造染色体不久也将被用于医 学和农业科学上。然而,这些善意的基因技术或许也将带来一场意想不到的灾难。人类也许认为自己操作的是一种友好的生物基因,然而 它们可能会以某种科学家意想不到的方法毁灭庄稼、毁灭动物甚至人类。 生化武器病毒对人类来说是最大的威胁之一,以前它很难被制造,然而目前因特网上的一些生化病毒制造信息却使其变得十分容易。 生化武器 在20世纪60年代,随着抗生素和抗滤过性病原体的发明,人类充满信心地认为我们已经永远征服了各种传染疾病,所有病毒都可以被 抗生素杀死。不幸的是,更多的病毒开始转变它们的基因以抵抗抗生素的作用。到现在为止,让医学家们束手无策的病毒不减反多。 基因工程走得更远,人类已经可以通过修补DNA改变生物体,用高科技改变一些动物或植物的遗传基因,人造染色体不久也将被用于医 学和农业科学上。然而,这些善意的基因技术或许也将带来一场意想不到的灾难。人类也许认为自己操作的是一种友好的生物基因,然而 它们可能会以某种科学家意想不到的方法毁灭庄稼、毁灭动物甚至人类。 生化武器病毒对人类来说是最大的威胁之一,以前它很难被制造,然而目前因特网上的一些生化病毒制造信息却使其变得十分容易。 五、超级火山爆发 <> 地球上曾遭遇过至少六次毁灭性的火山爆发,相对于这些超级火山的爆发,意大利埃特纳火山只是一个小儿科。英国伦敦大学学院的地球 物理学教授比尔·麦格在他的著作《走向世界尽头》一书中认为,下一场超级火山爆发只是一个时间问题。 火山爆发 地球上曾遭遇过至少六次毁灭性的火山爆发,相对于这些超级火山的爆发,意大利埃特纳火山只是一个小儿科。英国伦敦大学学院的地球 物理学教授比尔·麦格在他的著作《走向世界尽头》一书中认为,下一场超级火山爆发只是一个时间问题。 六、地震引发世界经济危机 大地震甚至可以改变地球转速 人类无法预知地球是否还会再发生一次类似1923年那样的东京大地震。在那场地震中,20万人死亡,经济损失达500亿美元。科 学家估算,如果人类再遭受一次类似1923年的东京大地震,世界股票市场将如自由跳水,欧洲和美国经济将彻底崩溃 。 七、小行星撞毁地球概率大过彩票中大奖 恐龙可能灭绝于小行星撞地 在地球过去的历史上,曾经多次被来自外太空的小行星或慧星撞击过,但这些天外来客由于体积较小,对地球构不成巨大的伤害。然而, 科学家认为,一颗直径超过150英尺的小行星撞向地球,就将成为一场人类的灾难。如果一颗这样大的小行星击中伦敦,将能使整个欧 洲毁灭。科学家通过测算,认为一颗直径1公里大小的小行星每隔10万年就会撞击地球一次,这种尺寸的天外物体将会引起全球性的生 态灾难。而一颗直径1 0公里大小的天外物体将会夷平地球,使地球重现6500万年前恐龙灭绝的灾难。据英国索尔福德大学的杜肯·斯蒂尔教授的研究,大 约有1500颗直径1公里大小的小行星已经或正在掠过地球的轨道。 八、热死 地球温室效应日益明显 电影《明日之后》一幕真的会来临吗? 在过去的一个世纪内,地球温度上升了0.6摄氏度,这直接导致了地球上由风暴、洪水、干旱等引起的各种天灾成倍增加。据统计,2 000年发生的地球天灾数是199 6年的两倍,科学家预测,在21世纪,这些灾难数将以6倍的比率增加。最新科学研究结果证明,今年夏季,北冰洋冰块正在大量融化 ,这些都将加速地球气候变暖,使未来的人类在温室效应的热浪中"渐渐死亡". 望及时采纳!
5,爱因斯坦的相对论是怎么回事是什么意思
相对论的实质就是揭示出时空、物质、运动这三者是密不可分的——它们彼此联系的密切程度远远超过经典物理原以为的那样。 相对论给出的是一种限制(主要就是洛仑兹变换以及广义协变),所有物理理论既然都是要涉及时空、运动、物质的,那它们就必须满足相对论给出的这些限制条件,否则就应修改理论(以使其满足相对论的要求)或者干脆抛弃旧理论。牛顿力学经此改造就成了相对论力学,薛定谔方程经此改造就成了狄拉克方程……《相对论》是爱因斯坦所著的一部在世界科学理论界影响巨大的著作,主要包括狭义相对论和广义相对论原理的阐述,中文版本由周学政、徐有智编译,编译目录如下:· ·第一部分 狭义相对论1.几何命题的物理意义2.坐标系3.经典力学中的空间和时间4.伽利略坐标系5.狭义相对性原理6.经典力学中所用到的速度相加原理7.光的传播定律与相对性原理的表面抵触8.物理学的时间观9.同时性的相对性10.距离概念的相对性11.洛伦兹变换12.量杆和时钟在运动时的行为13.速度相加原理:斐索试验14.相对论的启发作用15.狭义相对论的普遍性结果16.经验和狭义相对论17.四维空间· ·第二部分 广义相对论1.狭义和广义相对性原理2.引力场3.引力场的思想试验4.惯性质量和引力质量相等是广义相对性公设的一个论据5.等效原理6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意7.广义相对性原理的几个推论8.在转动的参考物上的钟和量杆的行为9.欧几里得和非欧几里得连续区域10.高斯坐标11.狭义相对论得时空连续区可以当作欧几里得连续区12.广义相对论得时空连续区不是欧几里得连续区13.广义相对论原理的严格表述14.在广义相对性原理的基础上理解引力问题.· 论动体的电动力学爱因斯坦根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导体和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。1、同时性的定义· 概述设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。· 概念如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。· 坐标值如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。”也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这样的定义就不够了。当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。如果在空间的A点放一只钟,那么对于贴近 A 处的事件的时间,A处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的B点放一只钟——我们还要加一句,“这是一只同放在 A 处的那只完全一样的钟。” 那么,通过在 B 处的观察者,也能够求出贴近 B 处的事件的时间。但要是没有进一步的规定,就不可能把 A 处的事件同 B 处的事件在时间上进行比较;到此为止,我们只定义了“ A 时间”和“ B 时间”,但是并没有定义对于 A 和 B 是公共的“时间”。只有当我们通过定义,把光从 A 到 B 所需要的“时间”,规定为等于它从 B 到 A 所需要的“时间”,我们才能够定义 A 和 B 的公共“时间”。设在“A 时间”tA ,从 A 发出一道光线射向 B ,它在“ B 时间”, tB 。又从 B 被反射向 A ,而在“A时间”t`A回到A处。如果tB-tA=tA-tB那么这两只钟按照定义是同步的。我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的:1 .如果在 B 处的钟同在 A 处的钟同步,那么在 A 处的钟也就同B处的钟同步。2 .如果在 A 处的钟既同 B 处的钟,又同 C 处的钟同步的,那么, B 处同 C 处的两只钟也是相互同步的。这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。根据经验,我们还把下列量值2|AB|/(tA-tA)=c当作一个普适常数(光在空虚空间中的速度)。要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。2 关于长度和时间的相对性· 概述下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得光速=光路的路程/时间间隔这里的“时间间隔”,是依照§1中所定义的意义来理解的。设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 X 轴上,然后使这根杆沿着X轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的:a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。由操作a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。此外,我们设想,在杆的两端(A和B),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间tA从 A 处发出,在时间tB于 B 处被反射回,并在时间t`A返回到 A 处。考虑到光速不变原理,我们得到:tB-tA=rAB/(c-v) 和 tA-tB=rAB/(c+v)此处 rAB表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同步进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。爱因斯坦相对论 汽车是运动的,树木是静止的,这样说大家都能接受,但如果反过来说树木是运动的,汽车是静止的则会有很多人说你痴人说梦。其实在物理学上这两种说法都是正确的,只是所选的参照系不同而已。这也是爱因斯坦伟大的相对论创建的基本出发点。 相对论创建的第一个假设是:所有参照系都遵循相同的物理定律。无论在地上还是在匀速行驶的汽车上,用尺子量一个木板或用秒表量一个钟摆晃动10个周期的时间,结果都是相同的。但是如果木板或钟摆在一个以一定速度驶过测量者面前的车上,重复上面的测量就会得到不同的结果。这种不同就是由所有参照系都遵循相同的物理定律造成的。 相对论创建的第二个假设是:光速在所有参照系中都是恒定的。刚一听好像和第一条假设说的是同一件事,可是仔细想想就会发现其中的奥妙。第二条假设的意思是无论你坐在飞驰的火车里还是静止的躺椅中,光速都保持恒定,和你所处的运动状态无关。原因就在于我们在处理日常物理目标的速度时得到的都是合速度。例如你驾驶一辆时速为25千米每小时的越野吉普,一位乘客以相对你10千米每小时的速度用弹弓射击前面的岩石,那么弹珠的实际运动速度就应该是35千米每小时。可是如果打开前车灯,按照常识光速是334,800,000千米每小时,加上车的运动速度,光的实际速度就应该是334,800,025千米每小时,可实际测量光速还是334,800,000千米每小时。为什么同样的参照系光和实际物体得到的结果不同呢? 要解释它首先要从速度的定义说起。单位时间内通过的距离叫做速度,即速度是距离被时间除得到的。长度收缩学说认为一个具有质量的物体在它运动方向上的测量长度是相对缩短的,达到光速时长度相应缩短为零。学说成立的基础是测量者和被测量物处于不同的参照系,且只发生在物体运动方向,不会影响和运动垂直方向的长度。也就是说当你驾驶一辆速度接近光速的汽车时,静止的观察者看到的车长远远小于它的实际车长,而高度方向没有变化。这种情况反过来说,即当你驾驶飞快的汽车通过一个门洞时,从你的角度来看这段距离要比实际距离短得多。这种情况在日常生活中经常被忽略不被注意是因为物体运动速度都很慢,长度收缩现象不明显。时间和长度一样也会随着参照系的变化而变化,这就是所谓的时间膨胀。随着运动速度的增加时间会相对变慢,一般情况下都比较微弱不易觉察,达到光速时时间会完全停止。但是这种现象也只有观察者和时钟不在同一参照系时才能发生,为了证明这一结论,两个原子钟被调节成完全相同,一个留在地球上,一个放在高速飞行的航天飞机上,当飞机降落时会发现飞机上的原子钟要比地球上的原子钟慢,慢的时间和由爱因斯坦相对论推算出来的结果相同。也就是说航天飞机上原子钟记录的时间相对地球上静止的原子钟的时间膨胀了。 理解了近光速或等光速运动时的长度和时间的变化,车头灯光速的问题就不难解释了,因为光运动和我们普通运动所涉及的距离和时间不同而已。 相对论还有一个重要的概念就是同时性,运动状态的不同会使人们观察到物体动作的先后顺序不同,例如屋子中有两盏灯,a站在两盏灯中间,b以一定速度踩着滑板向一盏灯运动正好到达中间。当两灯同时打开时a看到的现象是两灯同时亮,而b看到的却是面对他的那盏先亮,背对他的那盏后亮。
6,爱因斯坦相对论到底是什么
其实我对这个概念也是一知半解的在网上找了点资料希望对你有用相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。 狭义相对论 主条目:狭义相对论 狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。 广义相对论 主条目:广义相对论 广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 ? 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。其实纯粹的科学对于我们普通人是没有用的因为你不是搞研究的太深了了解对你不是没用会提高自己的知识面但是我认为没必要太深追概念。对于我来说相对论是这么理解的。给你举个例子吧。你说一辆汽车以每小时二百公里的速度前进你说他是快还是慢呢?其实对于我们普通人来看就很快了。但是如果我们拿它的速度和行星的速度比起来就 和乌龟爬没有两样的。再一个例子,假如给你一台电脑你怎么判断他的好坏呢如果你的大脑中没有一个关于好坏的概念怎么来比较呢?如果你试了一下一个高端的电脑你再试试一个比较便宜的感觉会怎么样。难道你会认为那个便宜的好吗?如果真有时光机器的话你拿那台低端的电脑给发明电脑EIAC的科学家看他们会认为怎么样呢?可想而知,一个人的思维的判断判断的过程是不是通过和你脑子里的认识进行对比得出结论。而你得出的结论只是一个相对的结论啊、在一定的环境下是成立的但也是相对成立的。你听说过牛顿的三大定律吗?他的定律也是在特定的条件下才成立的。象这样的例子太多了希望你在生活中好好体会一下是不是这个理。相对论爱因斯坦第一假设 谷锐 全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。 第一个可以这样陈述: 所有惯性参照系中的物理规律是相同的 此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚: 假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?” 不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。 ...相对论爱因斯坦第一假设 谷锐 全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。 第一个可以这样陈述: 所有惯性参照系中的物理规律是相同的 此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚: 假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?” 不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。 你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。 另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。 实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动) 例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。 这里有一个最低限度:惯性系是一个静止或作匀速直线运动的系。爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才?不是因速度导致空间时间变化,而是爱因斯坦定义的空间和时间,就是变化的。 论动体的电动力学爱因斯坦根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。 堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 c 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。一 运动学部分§1、同时性的定义设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。” 也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时问,那么这徉的定义就不够 了。当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。如果在空间的a点放一只钟,那么对于贴近 a 处的事件的时间,a处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的b点放一只钟——我们还要加一句,“这是一只同放在 a 处的那只完全一样的钟。” 那么,通过在 b 处的观察者,也能够求出贴近 b 处的事件的时间。但要是没有进一步的规定,就不可能把 a 处的事件同 b 处的事件在时间上进行比较;到此为止,我们只定义了“ a 时间”和“ b 时间”,但是并没有定义对于 a 和 b 是公共的“时间”。只有当我们通过定义,把光从 a 到 b 所需要的“时间”,规定为等于它从 b 到 a 所需要的“时间”,我们才能够定义 a 和 b 的公共“时间”。设在“a 时间”ta ,从 a 发出一道光线射向 b ,它在“ b 时间”, tb 。又从 b 被反射向 a ,而在“a时间”t`a回到a处。如果 tb-ta=ta-tb那么这两只钟按照定义是同步的。我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的: 1 .如果在 b 处的钟同在 a 处的钟同步,那么在 a 处的钟也就同b处的钟同步。 2 .如果在 a 处的钟既同 b 处的钟,又同 c 处的钟同步的,那么, b 处同 c 处的两只钟也是相互同步的。这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。根据经验,我们还把下列量值 2|ab|/(ta-ta)=c当作一个普适常数(光在空虚空间中的速度)。要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。§2 关于长度和附间的相对性下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。 1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。 2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得光速=光路的路程/时间间隔这里的“时间间隔”,是依照§1中所定义的意义来理解的。设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 x 轴上,然后使这根杆沿着x轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的: a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。 b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。由操作 a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。 由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。此外,我们设想,在杆的两端(a和b),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间ta从 a 处发出,在时间tb于 b 处被反射回,并在时间t`a返回到 a 处。考虑到光速不变原理,我们得到: tb-ta=rab/(c-v) 和 ta-tb=rab/(c+v)此处 rab表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同不进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。
7,爱因斯坦的相对论内容是什么
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。 四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。 相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。 伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。 著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。 由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。 爱因斯坦相对论 汽车是运动的,树木是静止的,这样说大家都能接受,但如果反过来说树木是运动的,汽车是静止的则会有很多人说你痴人说梦。其实在物理学上这两种说法都是正确的,只是所选的参照系不同而已。这也是爱因斯坦伟大的相对论创建的基本出发点。 相对论创建的第一个假设是:所有参照系都遵循相同的物理定律。无论在地上还是在匀速行驶的汽车上,用尺子量一个木板或用秒表量一个钟摆晃动10个周期的时间,结果都是相同的。但是如果木板或钟摆在一个以一定速度驶过测量者面前的车上,重复上面的测量就会得到不同的结果。这种不同就是由所有参照系都遵循相同的物理定律造成的。 相对论创建的第二个假设是:光速在所有参照系中都是恒定的。刚一听好像和第一条假设说的是同一件事,可是仔细想想就会发现其中的奥妙。第二条假设的意思是无论你坐在飞驰的火车里还是静止的躺椅中,光速都保持恒定,和你所处的运动状态无关。原因就在于我们在处理日常物理目标的速度时得到的都是合速度。例如你驾驶一辆时速为25千米每小时的越野吉普,一位乘客以相对你10千米每小时的速度用弹弓射击前面的岩石,那么弹珠的实际运动速度就应该是35千米每小时。可是如果打开前车灯,按照常识光速是334,800,000千米每小时,加上车的运动速度,光的实际速度就应该是334,800,025千米每小时,可实际测量光速还是334,800,000千米每小时。为什么同样的参照系光和实际物体得到的结果不同呢? 要解释它首先要从速度的定义说起。单位时间内通过的距离叫做速度,即速度是距离被时间除得到的。长度收缩学说认为一个具有质量的物体在它运动方向上的测量长度是相对缩短的,达到光速时长度相应缩短为零。学说成立的基础是测量者和被测量物处于不同的参照系,且只发生在物体运动方向,不会影响和运动垂直方向的长度。也就是说当你驾驶一辆速度接近光速的汽车时,静止的观察者看到的车长远远小于它的实际车长,而高度方向没有变化。这种情况反过来说,即当你驾驶飞快的汽车通过一个门洞时,从你的角度来看这段距离要比实际距离短得多。这种情况在日常生活中经常被忽略不被注意是因为物体运动速度都很慢,长度收缩现象不明显。时间和长度一样也会随着参照系的变化而变化,这就是所谓的时间膨胀。随着运动速度的增加时间会相对变慢,一般情况下都比较微弱不易觉察,达到光速时时间会完全停止。但是这种现象也只有观察者和时钟不在同一参照系时才能发生,为了证明这一结论,两个原子钟被调节成完全相同,一个留在地球上,一个放在高速飞行的航天飞机上,当飞机降落时会发现飞机上的原子钟要比地球上的原子钟慢,慢的时间和由爱因斯坦相对论推算出来的结果相同。也就是说航天飞机上原子钟记录的时间相对地球上静止的原子钟的时间膨胀了。 理解了近光速或等光速运动时的长度和时间的变化,车头灯光速的问题就不难解释了,因为光运动和我们普通运动所涉及的距离和时间不同而已。 相对论还有一个重要的概念就是同时性,运动状态的不同会使人们观察到物体动作的先后顺序不同,例如屋子中有两盏灯,A站在两盏灯中间,B以一定速度踩着滑板向一盏灯运动正好到达中间。当两灯同时打开时A看到的现象是两灯同时亮,而B看到的却是面对他的那盏先亮,背对他的那盏后亮。爱因斯坦相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论讨论的是匀速直线运动的惯性参照系之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论颠覆了人类对宇宙和自然的常识性观念,提出了“时间和空间的相对性”,“四维时空”,“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915年。·第一部分 狭义相对论 1.几何命题的物理意义 2.坐标系 3.经典力学中的空间和时间 4.伽利略坐标系 5.狭义相对性原理 6.经典力学中所用到的速度相加原理 7.光的传播定律与相对性原理的表面抵触 8.物理学的时间观 9.同时性的相对性 10.距离概念的相对性 11.洛伦兹变换 12.量杆和时钟在运动时的行为 13.速度相加原理:斐索试验 14.相对论的启发作用 15.狭义相对论的普遍性结果 16.经验和狭义相对论 17.四维空间·第二部分 广义相对论 1.狭义和广义相对性原理 2.引力场 3.引力场的思想试验 4.惯性质量和引力质量相等是广义相对性公设的一个论据 5.等效原理 6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意 7.广义相对性原理的几个推论 8.在转动的参考物上的钟和量杆的行为 9.欧几里得和非欧几里得连续区域 10.高斯坐标 11.狭义相对论得时空连续区可以当作欧几里得连续区 12.广义相对论得时空连续区不是欧几里得连续区 13.广义相对论原理的严格表述 14.在广义相对性原理的基础上理解引力问题.论动体的电动力学 爱因斯坦 根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑 大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导体和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。 堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。 这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。编辑本段1、同时性的定义概述 设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。概念 如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。坐标值 如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。” 也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这样的定义就不够了。 当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。 如果在空间的A点放一只钟,那么对于贴近 A 处的事件的时间,A处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的B点放一只钟——我们还要加一句,“这是一只同放在 A 处的那只完全一样的钟。” 那么,通过在 B 处的观察者,也能够求出贴近 B 处的事件的时间。但要是没有进一步的规定,就不可能把 A 处的事件同 B 处的事件在时间上进行比较;到此为止,我们只定义了“ A 时间”和“ B 时间”,但是并没有定义对于 A 和 B 是公共的“时间”。只有当我们通过定义,把光从 A 到 B 所需要的“时间”,规定为等于它从 B 到 A 所需要的“时间”,我们才能够定义 A 和 B 的公共“时间”。设在“A 时间”tA ,从 A 发出一道光线射向 B ,它在“ B 时间”, tB 。又从 B 被反射向 A ,而在“A时间”t`A回到A处。如果 tB-tA=tA-tB 那么这两只钟按照定义是同步的。 我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的: 1 .如果在 B 处的钟同在 A 处的钟同步,那么在 A 处的钟也就同B处的钟同步。 2 .如果在 A 处的钟既同 B 处的钟,又同 C 处的钟同步的,那么, B 处同 C 处的两只钟也是相互同步的。 这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。 根据经验,我们还把下列量值 2|AB|/(tA-tA)=c 当作一个普适常数(光在空虚空间中的速度)。 要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。编辑本段2 关于长度和时间的相对性概述 下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。 1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。 2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得 光速=光路的路程/时间间隔 这里的“时间间隔”,是依照§1中所定义的意义来理解的。 设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 X 轴上,然后使这根杆沿着X轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的: a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。 b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。 由操作 a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。 由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。 通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。 此外,我们设想,在杆的两端(A和B),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。 我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间tA从 A 处发出,在时间tB于 B 处被反射回,并在时间t`A返回到 A 处。考虑到光速不变原理,我们得到: tB-tA=rAB/(c-v) 和 tA-tB=rAB/(c+v) 此处 rAB表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同步进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。 由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。
文章TAG:
飞行汽车的股票是什么飞行 飞行汽车 汽车