股票涨幅中位数是什么概念,中位数是什么它有什么优点
来源:整理 编辑:双城财经 2023-11-26 01:13:38
1,中位数是什么它有什么优点
是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。中位数的优点是不受偏大或偏小数据的影响,因此,有时用它代表全体数据的一般水平更合适。望采..中位数的优点是不受偏大或偏小数据的影响,因此,有时用它代表全体数据的一般水平更合适。
2,中位数是什么
【定义】将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数【优点】中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。【缺点】缺乏敏感性是 再中间的 一个数字 比如 1 2 3 2就是中位数 比如 1 2 3 4 就是 2+3÷2等于2。5
3,什么是中位数的定义
定义当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。(注意:中位数和众数不同,众数指最多的数,众数有时不止一个,而中位数只能有一个。)按定额完成%分工人数(人)向上累计次数向下累计次数80~9090~100100~110110~120120~130130~140140~1505111427201495163057779110010095847043239合计100————一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数,注意:和众数不同,中位数不一定在这组数据中)
4,中位数是什么意思
中位数又称中值,对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。中位数又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。区别联系:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向。优缺点:平均数:需要全组所有数据来计算;易受数据中极端数值的影响。中位数:仅需把数据按顺序排列后即可确定;不易受数据中极端数值的影响。众数:通过计数得到;不易受数据中极端数值的影响。
5,什么叫中位数
平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。众数:在一组数据中出现次数最多的数叫做这组数据的众数。平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。[编辑本段]实例 1组数:1、2、3、3、4的中位数是3。 2组数:1、2、3、3的中位数是2.5。 3组数:1、1、2、2的中位数是1.5。统计数据中从小到大排序,最中间的数叫做中位数 如果是奇数个数据,比如9个,那么从小到大第五个是中位数;如果是偶数个,如8个,那么第4个和第5个都是中位数。中位数,就是一组数据按照一定顺序排列之后,如果这些数一共有偶数个数字,就取中间两个数字的平均数。 如:1 3 4 8 这一组数据已经按照从小到大的顺序排列了,且一共有偶数个数字,就取中间的两个数字:3 4,做平均数,得出的结果是3.5,那么,3.5就是本组数据的中位数。 如果这组数据有基数个数字,那么就取中间的一个数。 如:3 5 6 9 20 6就是本组数据的中位数
6,中位数是什么意思
比如现在有一组数据 1,2,3,4,4,5,5,5,6,7,8,8,9,从小到大排好了顺序 一共是13个,其中5有3个,4和6有2个,其他都是1个 中位数是: 不受偏大或偏小数据的影响。 有时用中位数代表全体数据的 一般水平更合适。 方法:有奇数个时中位数就是该组数据顺序排列后最中间的数中位数,就是这些数据排列好了以后中间的那个数字,比如现在是13个,中间那个应该是第7个,所以就是5,那么如果有偶数个数据,那么就是中间两个数字的平均数,比如说18个数据,就应该是第9位和第10位相加除以2。 一串数字,从小到大排列,中间数就是中位数,如果是偶数就是中间2个数的平均数!!!众数:是指在一组数据中出现最多的数值。众数可能多于1个。 中位数:是指一组数据从小到大排列,位于中间的那个数。可以是一个(数据为奇数),也可以是2个的平均(数据为偶数)。 没有中数,你是说平均数吧? 平均数:一组数据的和,除以这组数据的个数的值,就是平均数。 初一就学到了.将一列数字按大小顺序排列,中间的那个数字就是中位数。例如一列数字1,2,4,5,7,8,,9,11,13。中位数是7 。 如果是1,2,4,5,7,8,8,9。八个数字没有中间的数字,就取第四和第五个数的平均数,即5和7的平均数,6.中位数统计学名词,是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数用Me表示。当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。(注意:中位数和众数不同,中位数不一定在这组数据中。而众数必定在该组数据)中位数(Median)统计学名词,是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。(注意:中位数和众数不同,中位数不一定在这组数据中。而众数必定在该组数据)其实就是一系列数列的中间数,但是是最中间的,不一定是数列里的书,你可以去平均~
7,中位数是什么
一、相同点
平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点
它们之间的区别,主要表现在以下方面。
1、定义不同
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同
平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同
在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同
平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众 数:是一组数据中的原数据 ,它是真实存在的。
5、代表不同
平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同
平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。
7、作用不同
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。
文章TAG:
股票 涨幅 中位数 位数 股票涨幅中位数是什么概念