1,甚么是股票相对论

是1档电视节目,挺好的,每天1帮基金经理评论当天股市的走势和对下1个交易日的预判。对股民有参考作用。可以看看哦。
好坏并存,对应变化
涨久必跌,跌久必涨
股票都是相对而言,股价高与低也是相对的
了解不了就不要了解
阿门,啥几把论都是扯淡

甚么是股票相对论

2,相对论是什么意思

相对论(principle of relativity relativism[5reletivizem] relativity[7rele5tiviti] theory of relativity) 相对论是关于时空和引力的基本理论,主要由爱因斯坦(albert einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
爱因斯坦曾巧妙而好理解地说,当你坐在一个美丽的姑娘身边两个小时,却感觉只坐了一分钟;相反你坐在一个很热的火炉边一分钟,却感觉想坐了两个小时。这就是相对论。
相对论是解决接近光速运动,会看到什么现象这类问题的,爱因斯坦给错了算式。同理,接近声速运动,会听到什么现象的问题也属于相对论,很多人都不知道。

相对论是什么意思

3,相对论的大意是什么

相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。狭义相对论狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。广义相对论广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 ? 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。
相对论分为广义和狭义 狭义相对论: 狭义相对论是由爱因斯坦在洛仑兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。 爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵科夫斯基为了狭义相对论提供了严格的数学基础, 从而将该理论纳入到带有闵科夫斯基度量的四维空间之几何结构中。 广义相对论: 广义相对论是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。

相对论的大意是什么

4,相对论的大概意思是什么

狭义相对论,简单来说,就是这样: 相对论的前提是光速的绝对性,可以说相对论就是由光速不变论推导出来的。 那么光速绝对性是怎么来的呢?学过物理的人都知道,物体运动的速度是相对的,对速度的描述必须有参考系,比如我们说飞机飞得很快,是以地面为参考系的。而且某个物体在不同的参考系中的速度是不一样的,例如,你坐在快速行走的公共汽车上,以地面为参考系的话,你和汽车一样,都是在快速行走的,但如果以旁边反向行走的另一部汽车为参考系的话,那么你的运动速度就要快很多,如果以你所在车厢本身为参考系的话,那么你是静止的。也就是说,某个物体的速度从这个参考系过渡到另外一个参考系,速度会变慢或者变快,这样一来,光速在某个参考系中过渡到另一个参考系中就有可能变大,再过渡到另外一个参考系中又有可能进一步变大…… 这样下去就会得出光速可以无限大的结论,反之也会得出光速可以很小甚至静止的结论。但是到目前为止,科学家所测得的光速也就在30万千米左右,而且也没发现有比光速更快的了,这就引发科学家得出光速是绝对的结论,也就是光速与参考系无关。 科学家也从不同方面地证实光速绝对性原理,例如:银河系有一座星云叫蟹状星云,它是由超星星爆发而成的。科学家根据这个星云膨胀的速度推算出它大约在公元1060年爆发而形成的,而我国古籍恰好有对它的记载,当时的人叫它客星,意思是新来的客人的意思。古书记载它在空中从出现到“消失”大约22个月,最亮的时间不过23天,而根据理论,如果光速没有绝对性,那么背离地球运动的星体发出的光速度较慢,面向地球运动的星体发出的光的速度较快,其它方向运动的星体发出的光速度一般,那么它们的爆炸强光到达地球的时间就会大大延长,据科学家计算,在地球上能看到它的时间应该在50年左右。这与记载相去甚远,而根据光速绝对论计算得出的结果则与记载非常接近。
狭义相对论基本原理 物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。 伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。 著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。 由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0.99倍光速,人的速度也是0.99倍光速,那么地面观测者的结论不是1.98倍光速,而是0.999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。 广义相对论基本原理 由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已。

5,相对论什么意思告诉我

呵呵 我用聊天的方式告诉你。相对论分为狭义相对论和广义相对论。你说的穿越时空和改变时间就是建立在狭义相对论的的证明之上的。狭义相对论主要证明了一点就是。宇宙中光速是恒定的(当然也是假设,但这个假设几十年了也没被推翻)在这之前我们都认为时间是恒定的。但是通过爱因斯坦的推算证明了速度和时间是有关联的。也就是说时空不是独立的。如果速度越快时间也就会变慢。当速度达到光速时,时间就会停止。这个实验在上世纪60年被科学家证明出来了。大概内容就是用2个原子表(非常精确误差极小的那种)一个放在陆地另一个放在飞机上。经过2小时的飞行飞机上的原子表比陆地上的慢了大概46毫秒。虽然这个数字很微小但证明了这个理论。那我们人类只要能达到光速(每秒30万公里)就能穿越时空。也就是去到未来假设我们坐非常接近光速的飞船在太空飞行1年这一年对我来说很短暂因为我们的时间很慢但对于地球上的人来说可能已过了100或200年了。而如果我们能达到超光速时间就会倒流。还是那个例子我们用超光速飞行一年可能回到地球就相当于倒退了100或200年。当然这也是个假设。没被证明也没被推翻。差不多就是这个道理我没跟你说公式和定理完全是大白话希望你能明白。
广义的相对论是指相对概念的论述,最常见的相对概念是大-小、多-少,相对于1,10是多的,相对于100,10是少的。通常所说的相对论,特指爱因斯坦相对论。相对论的产生,全部是由特定的人从特定的角度去论述问题,而全面的论述问题,无论何人,都会同意,就是客观论述就是科学规律,因此科学不存在相对论。爱因斯坦相对论本是用来解释运动速度接近测量速度时会发生什么现象的。因速度是相对的,因此各种测量速度,都有相对接近的情况出现,所以相对论应有更广泛的使用范围。爱因斯坦的相对论是为解释接近光速高速运动的粒子,运动规律不符合牛顿定律,而符合洛伦兹规律的原因而发现。为此他做了两条假设:不同参照系的运动规律,存在相同的数学形式;光速在不同参照系中相同。狭义相对论讲惯性系中存在相对论效应。爱因斯坦由算式推导出钟慢、尺缩、空间弯曲等结果,与传统定义不同。 但是今天,我们发现光的粒子说不象爱因斯坦时代那么牢固,很多现象,用波的规律都可解释,爱因斯坦的假设也不具有普遍规律,按照现在的发现,可以有一个适应性更广的相对论且与所有理论兼容,其推导仅需要对原相对论做一点修正,不需要进行推导假设。 当钟以接近声速远离时,由于声音传递需要时间,听到的钟声比本地的钟慢,当钟以接近光速远离,由于光传递需要时间,看到的钟比本地的钟慢,这才是爱因斯坦计算出的钟慢效应的本质。 光是纯粹的波,相对论效应只是测量效应,由于测量速度而引入的效应。爱因斯坦的相对论是需要修正的相对论。 爱因斯坦推导相对论时,根本没有排除这个效果,他的推导存在一个巨大的漏洞!因此说爱因斯坦的理论是需要修正的理论。
E=MC^2首先意思就是说能量等于物体质量乘以光速的平方。意思质量和能量是可以相互转换的。原子弹也就是这个原理。更广义的。可以推论出速度越大,时间就越慢,速度等于光速,时间相当于就停止。速度超过光速,就可以时间倒退。中间各种数学过程太复杂,世界上真弄懂了的人不超过10个。你知道个大概就行了。
在相对论中,认为时空不是独立的一个以速度v运动的物体,其经过的时间t`=t√[1-(v/c)^2],其中t为静止的物体经过的时间。v=0时 t`=t当v接近光速c时,如v=3c/5时t`=(4/5)t,既我们经过的时间比静止时的时间短了。到目前为止,这还很难从实际上去验证它。当我们的速度大于光速时t`=t√[1-(v/c)^2]是没有意义的,也就是认为我们此时可以穿梭时空了
相对论本身是不允许超光速的,所以不存在“时间穿梭”;但是狭义相对论根据两条基本原理(1.对于所有惯性系,一切物理规律都具有相同的数学表达形式;2.真空中光沿各个方向传播的速率都相等,与光源和观察者的运动状态无关)推导出运动物体的时间流逝变慢而长度收缩的效应;运动越快,时间越慢,长度越短。于是人们超出相对论的范畴而猜想:物体达到光速时时间停止,长度收缩为0,超过光速时时间“倒流”,物体以另外一种状态存在。但实际上根据相对论公式计算出来的超光速物体(假设存在)的时间和长度是虚数,而非负数,故其时间是否倒流推不出来,只是一种不严格的猜测。而广义相对论根据两条推广的基本原理(1.一切物理定律在所有参考系(无论是惯性的或非惯性的)中都具有相同的形式;2.引力和非惯性系中的惯性力等效)进一步推导出引力场的时空弯曲效应,发现引力越强的地方,时间流逝越慢,逃逸速率越大;当到达“黑洞”边界时,逃逸速率达到光速,时间停止。于是人们超出广义相对论的范畴而猜想,“黑洞”内部的逃逸速率可能要超过光速,时间可能会倒流,时空可能以另外一种状态(如虚数状态)存在,或者“黑洞”通到宇宙的另一处而形成“时空虫洞”,于是经由“黑洞”可以穿越时间和空间到达宇宙的另外一个时空区域。这同样只是猜想,具体如何则有待科学实践对相对论的发展突破。
如果一个钟,以0.5倍声速从原点远去,我们会听到什么现象呢? 一秒钟时,它距离原点0.5声秒距离报1秒,但这个事件我们在原点听见,需要再过0.5秒,于是我们发现,在本地钟1.5秒时,远处的钟报1秒,本地钟3秒时,远离的钟报2秒,也就是我们在忽略测量时间时,误以为远去的钟慢了。而且速度越快,钟慢得越厉害。假设有一把尺长1声秒,而我们的测量地面上有一无限长尺子固定不动,运动尺头尾各有一个探测装置,在探测到与地面某一尺刻度重合时,用声音报出该刻度,我们在地面尺原点接收声音。尺匀速运动逐渐远离,当尺尾报0声秒时,尺头已经距离我们1声秒,而这个距离,要1秒后我们才能收到;当尺尾到1声秒距离时,尺头到2声秒,还是要在我们收到尺尾报1声秒后1秒,我们才能收到尺头报2声秒,于是我们会直观的认为,尺尾先到刻度,尺头后到达它本应立刻到达的刻度,感觉好象远离的尺,缩短了。而且运动速度越快,感觉短的越厉害。超过声速我们将追上钟以前发出的声音,也就是先听到钟敲3下,报3点,再听到钟敲2下,报2点,然后听到钟敲1下,报1点,这就是超过声速时间倒流现象!钟慢、尺缩、超光速时间倒流现象,都可以用声音试验做出结果,这只能证明爱因斯坦的结论有问题,他忽略了测量速度的问题,把现象当成了物理本质。照本文方法解释相对论,双生子悖论、子回到未生时杀父悖论都不存在。用声音实验,完全可以做出效果!

6,相对论的概念是什么

相对论是时空和引力的理论,这是基本概念。
这些不是概念哦,是原理相对论分为两种,一般相对论与狭义相对论,他主要阐述的是空间与时间的关系,它的推论证明就是光速不变原理与时间效应的关系和一般相对论的成立。笼统的来讲,相对论是站在事物与事物之间的相互角度思考,来观察他们的相对性和独立性,他发现:每一个时间都是一个空间事物的定格,这就代表:时间与空间的相对性,他又发现,时间与速度在相对角度上的钟慢效应,他还发现:其实二维空间中点与点之间的直线并不是最短,当一个时间中的空间做某种转移会造成一定的空间折叠的现象,可以说,AB的重合是最短,至于AB的动态极其空间折叠需要多大的能量他没有明确的叙述,他只是说宇宙中存在着一种平面,它承接了整个空间的质量,也就是宇宙的质量,当宇宙的质量不稳定或某一处的质量大于相对的承受力时,就会弯曲,这一点又恰好的解释了万有引力的存在。根据上述几点,以及爱伦兹变换和一定的方程组证明:当一个空间的质量大于其宇宙相应的承受量,且这一时间中关于空间的相互引力以超光速进行,这种空间折叠维持的时间与速度与引力的大小有关。但其实以目前来讲,相对论的可施性根本不可能,因为目前没有任何一种能量足以改变这一时间中空间的质量,造成空间折叠与时光扭曲,有的科学家天真的以为黑洞的爆发力可以,但是他们往往忽略了量子力学的存在与时间效应,因此即使达到这种能量,使用的空间必须是无限大且没有空间的原型,但是这样的空间只能是虚态的模拟空间,因此地球是绝对行不通的,一些人也不明白相对论究竟在阐述什么,他们跟的说了一个极其错误概念:超光速就能穿越时空。我们想象:如果我的速度超越光的速度,只是对于我来讲,我的钟比别人的钟慢而已,这还只是相对问题,但是站在时间的立场上,我的时间轴绝不会因为我的速度比别人快就停下来了,请注意,时间与空间不能独立,时间与空间的共同构成:时空。因此穿越时空是一中时间所对应空间中的转移或介入,绝不是单纯的时间改变或空间效应。相信你已经明白了相对论的伟大,但它却也成为一个导致许多科学家心中疯狂的概念!最后明确一点超光速就能穿越时空是错误的概念,时间与空间不能独立,时间与空间的共同构成:时空。因此穿越时空是一中时间所对应空间中的转移或介入,绝不是单纯的时间改变或空间效应,,
【狭义相对论】 马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。 狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。 四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。 四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。 相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。 【广义相对论】 相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。 相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。 空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。 相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。

7,什么是相对论

广义的相对论是指相对概念的论述,最常见的相对概念是大-小、多-少,相对于1,10是多的,相对于100,10是少的。通常所说的相对论,特指爱因斯坦相对论。相对论的产生,全部是由特定的人从特定的角度去论述问题,而全面的论述问题,无论何人,都会同意,就是客观论述就是科学规律,因此科学不存在相对论。爱因斯坦相对论本是用来解释运动速度接近测量速度时会发生什么现象的。因速度是相对的,因此各种测量速度,都有相对接近的情况出现,所以相对论应有更广泛的使用范围。爱因斯坦的相对论是为解释接近光速高速运动的粒子,运动规律不符合牛顿定律,而符合洛伦兹规律的原因而发现。为此他做了两条假设:不同参照系的运动规律,存在相同的数学形式;光速在不同参照系中相同。狭义相对论讲惯性系中存在相对论效应。爱因斯坦由算式推导出钟慢、尺缩、空间弯曲等结果,与传统定义不同。 但是今天,我们发现光的粒子说不象爱因斯坦时代那么牢固,很多现象,用波的规律都可解释,爱因斯坦的假设也不具有普遍规律,按照现在的发现,可以有一个适应性更广的相对论且与所有理论兼容,其推导仅需要对原相对论做一点修正,不需要进行推导假设。 当钟以接近声速远离时,由于声音传递需要时间,听到的钟声比本地的钟慢,当钟以接近光速远离,由于光传递需要时间,看到的钟比本地的钟慢,这才是爱因斯坦计算出的钟慢效应的本质。 光是纯粹的波,相对论效应只是测量效应,由于测量速度而引入的效应。爱因斯坦的相对论是需要修正的相对论。 爱因斯坦推导相对论时,根本没有排除这个效果,他的推导存在一个巨大的漏洞!因此说爱因斯坦的理论是需要修正的理论。
相对论的发展历经了“狭义相对论”和“广义相对论”两个阶段。后者假定了前者作为一种极限情形的有效性,它是前者的连贯一致的延续。A.狭义相对论经典力学中对空间和时间的物理解释从物理的观点来看,几何学是一些定律的总和,由这些定律能把相互静止的刚体置于彼此相对的位置上(比如,一个三角形由三条端点永远连接的杆组成)。人们设定用这种解释,欧几里得定律是有效的。在这种解释中,“空间”原则上是一个无限的刚体(或框架),其他的物体是与之相关联的(参照系)。解析几何(笛卡尔)用三个相互正交的刚性杆作为参照体表现空间,在这些刚性杆上通过垂直投影这一熟悉的办法(利用刚体的单位尺度),便测得空间点的“坐标”(x,y,z)。物理学研究空间和时间中的“事件”。每一个事件不仅有自己的空间坐标x,y,z,还有一个时间值t。后者被认为可利用一个其空间大小可以忽略(作理想周期循环)的钟来测得,这个钟C被看作在坐标系中一点,例如在坐标原点(x=y=z=0)处是静止的,在空间点P(x,y,z)上发生的事件的时刻便被规定为与事件同时的钟C所显示的时刻。在这里,假定“同时”的概念无需专门的定义就有物理上的意义。这种精确性的缺乏似乎是无害的,只因光(其速度在我们日常经验看来几乎是无限的)使得空间上分开的事件的同时性看起来能被立即加以确定。通过利用光信号来从物理上定义同时性,狭义相对论消除了这个精确性的缺乏。在P点发生事件的时间t就是从该事件发出的光信号到达时钟C时从C上读的时间。考虑到光信号通过这一距离所需事件,对这一时刻进行了修正。在做这种修正时,(假定)光速为常数。这个定义把空间上分开的两个事件的同时性概念归化为在同一地点发生的两个事件(即光信号到达C和C上的读数)的同时性(符合)。经典力学以伽利略原理为基础,即:只要其他物体对其没有作用,一个物体总是作直线匀速运动。这一陈述并非对于任意运动的坐标系都是正确的,它仅能适用于所谓的“惯性系”。惯性系互相作直线匀速运动。在经典物理学中,所有定律仅仅对全体惯性系才能说是适用的(狭义相对性原理)。现在便很容易理解导致产生狭义相对论的那个窘境。经验和理论都逐渐使人确信,光在真空中总是以不变的速度C传播,而与光的颜色及光源运动状态无关(光速恒定原理——以下称为“L—原理”)。然而基本的直观考虑似乎表明同一光线不可能相对所有惯性系都以同样的速度C运动。L—原理似乎同狭义相对性原理发生了矛盾。但实际上这个矛盾不过只是一个表面现象,它实质上是基于对事件的绝对性,或对空间分开的事件的同时性的偏见之上。我们刚刚看到,一个事件的x,y,z和t目前只能相对于某一个选定的坐标系(惯性系)来确定。如果没有特定的物理假设,从一个惯性系过渡到另一个惯性系而实现事件的x,y,z变换(坐标变换)是不可能的。然而,下面的假定却恰好足以作为一种解决方案;L—原理对所有惯性系都成立(狭义相对性原理对L—原理的应用)。由此而确定的关于x,y,z,t的线性变换称为洛仑兹变换。洛仑兹变换在形式上以由两个无限靠近的事件的坐标差dx,dy,dz,dt构成的表达式 不变为特点(即通过变换之后,由新坐标系中坐标差构成同样的表达式)。有了洛仑兹变换,狭义相对论原理可以表述为:自然规律对于洛仑兹变换都是不变的(即,若通过x,y,z,t的洛仑兹变换对某个自然规律引进一套新的惯性系,则此自然规律不会改变其形式)。狭义相对论引发了对空间和时间的物理概念的清晰理解。与之相关的,也引发了对运动着的测量杆和测量钟的行为的认识。它在原则上去掉了绝对同时性的概念,从而也摆脱了牛顿意义上的远距离瞬间作用的概念。它表明了当处理运动速度同光速相比不是小得可以忽略的运动时,如何对运动规律进行修改。它导致了麦克斯韦的电磁场方程组形式上的澄清,尤其是它还引发了对电场和磁场本质上的同一性的理解。它把动量守恒和能量守恒这两个规律统一起来,从而展示了质量和能量的等效性。从形式的观点上看,人们可以这样来刻划狭义相对论的成就:它概括地表明了普适常数c(光速)在自然规律中扮演的较色,同时展示了以时间为一方,空间坐标为另一方,两者进入自然规律的方式之间存在着密切联系。B.广义相对论狭义相对论把经典力学的基础限定在一个基本点上,即下列论断:自然规律仅对惯性系成立。“允许的”坐标变换即那些使规律形式不变的变换只有(线性)的洛仑兹变换。这类限制真的有物理事实根据吗?下面的论证令人信服地否定了它。等效原理。物体具有惯性质量(对加速度的抗性)和重的质量(它决定物体在特定引力场,比如地球表面场中的重量),这两个从定义上看来如此不同的量,但按照经验,是用一个同样的数值来度规的。对此,一定有更深层的原因。这一事实也可这么来表述:不同质量的物体在同一引力场中得到相同的加速度。最后,它也可以这样表述:物体在引力场中的行为可以和没有引力场情况下相同,只要后一情形所用的参照系是一个匀加速坐标系(而不是惯性系)。因而,似乎没有理由禁止对后一情形作如下的解释。人们把这个坐标系看作是“静止的”,将相对它而存在的“表观”引力场看作是“真实的”。由坐标系的加速度而“产生”的引力场当然具有无限的延展范围,它不可能由有限区域的引力质量产生。然而,若我们要寻找一个类场的(field like)理论,这一事实并不妨碍我们。有了这种解释,惯性系便失去了意义,而且我们获得了关于引力质量和惯性质量等效的“说明”(物质的这一同一性质表现为重量或惯性,由描述方式来决定)。从形式上考虑,承认相对原来“惯性”坐标作加速运动的坐标系也就意味着承认非线性坐标变换,进而大大推广了不变性的思想,即相对性原理。首先,利用狭义相对论的结果所做的深入讨论表明,有了这么一种推广,坐标不能再直接解释为测量的结果。只有当坐标差与描述引力场的场量结合起来才能确定事件间可测量的距离。当人们发现自己不得不承认非线性变换作为等效坐标系间的变换之后,最简单的要求看来是承认所有连续的坐标变换(它们形成一个群),也即承认任何以正则函数来描述场的曲线坐标系(广义相对性原理)。
打个电话 斯坦不就OK了!

文章TAG:股票  周期  相对  相对论  股票周期相对论是什么意思  
下一篇