1,勾股定理小论文

勾股定理的新验证法  「摘要」这是我独立思考出在课本所学知识之外的验证方法,它能使我更一步的了解勾股定理,使我在勾股定理的海洋中再潜下一层,获取“珍宝”,也为我在将来的学习中打下勾股定理的基础。  「思考」当我在资料中了解到勾股定理有那么多种证明方法时,我便想了解到一种新的解法。因为当我在听到这个资料时,我才知道我只获取了勾股定理的海洋中表层的小鱼,所以,我被我的好奇心带到那勾股定理的海洋深处,同时也将我带入了要了解新的勾股定理验证方法的心态中,我抱着这种想法,去了解它。  「去做」  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。 过点C作AC的延长线交DF于点P.  ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,  ∴ ∠EGF = ∠BED,  ∵ ∠EGF + ∠GEF = 90°,  ∴ ∠BED + ∠GEF = 90°,  ∴ ∠BEG =180°―90°= 90°  又∵ AB = BE = EG = GA = c,  ∴ ABEG是一个边长为c的正方形。  ∴ ∠ABC + ∠CBE = 90°  ∵ RtΔABC ≌ RtΔEBD,  ∴ ∠ABC = ∠EBD.  ∴ ∠EBD + ∠CBE = 90°  即 ∠CBD= 90°  又∵ ∠BDE = 90°,∠BCP = 90°,  BC = BD = a.  ∴ BDPC是一个边长为a的正方形。  同理,HPFG是一个边长为b的正方形.  设多边形GHCBE的面积为S,则  A^2+B^2=C^2.  (图大概就是这样)  「好处」  这是我自己想出来的解法,虽然这与其余的证明方法有所重合,但这是我自己想出来的,没有任何外界的帮助。这使我在同学间新多出了一种解决方法,其余同学未掌握的方法,也使我比其余的同学知道得更多。  「关键词」勾股定理 证明方法
王八

勾股定理小论文

2,勾股定理内容

两个直角边的平方等于斜边的平方。即α*α+b*b=c*c
勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a^2;+b^2;=c^2;,即α*α+b*b=c*c推广:把指数改为n时,等号变为小于号据考证,人类对这条定理的认识,少说也超过 4000 年中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
勾股定理 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。毕达哥拉斯(pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

勾股定理内容

3,分行几何学是一本怎么样的书

学 学过数学的人,都知道它有一门分科叫作“几何学”,然而却不一定知道“几何”这个名称是怎么来的。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《龟虽寿》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。 ==简史== 几何学有悠久的历史。最古老的[[欧氏几何]]基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《[[几何原本]]》是公理化系统的第一个范例,对西方数学思想的发展影响深远。 一千年后,[[笛卡儿]]在《[[方法论]]》的附录《几何》中,将[[坐标]]引入几何,带来革命性进步。从此几何问题能以[[代数]]的形式来表达。实际上,几何问题的代数化在[[中国数学史]]上是显著的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。 欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。 几何学的现代化则归功于[[克莱因]]、[[希尔伯特]]等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。 ==古代几何学== 几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。 中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。 ==名称的来历== 几何这个词最早来自于希腊语“γεωμετρ?α”,由“γ?α”(土地)和“μετρε ?ν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。 1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。 ==分支学科== 平面几何 立体几何 非欧几何 罗氏几何 黎曼几何 解析几何 射影几何 仿射几何 代数几何 微分几何 计算几何 拓扑学 参考文献 《世界数学史简编》,梁宗巨,1981年,辽宁人民出版社,第90页~第92页 ==几何学的发展简史== 由于人类生产和生活的需要,产生了几何学。 在原始社会里,人类在生产和生活中,积累了许多有关物体的形状、大小和相互之间的位置关系的知识。例如,古代的人们认识他们的猎物的形状、大小,记住它们的居住地与打猎地之间的距离,以及打猎地在居住地的那个方位。 随着人类社会的不断发展,人们对物体的形状、大小和相互之间的位置关系的认识愈来愈丰富,逐渐地积累起较丰富的几何学知识。 相传四千年前,埃及的尼罗河每年洪水泛滥,总是把两岸的土地淹没,水退后,使土地的界线不分明。当时埃及的劳动人民为了重新测出被洪水淹没的土地的地界,每年总要进行土地测量,因此,积累了许多测量土地方面的知识。从而产生了几何学的初步知识。 后来,希腊人由于跟埃及人通商,从埃及学到了测量与绘画等的几何初步知识。希腊人在这些几何初步知识的基础上,逐步充实并提高成为一门完整的几何学。“几何学”这个词,是来自希腊文,原来的意义是“测量土地技术”。“几何学”这个词一直沿用到今天。 公元前338年,希腊人欧几里德,把在他以前的埃及和希腊人的几何学知识加以系统的总结和整理,写了一本书,书名叫做《几何原本》。1607年,我国的数学家徐光启和西方人利玛窦合作,把欧几里德的《几何原本》第一次介绍到我国。欧几里德的《几何原本》是几何学史上有深远影响的一本书。目前,我们学习的几何学课本多是以《几何原本》为依据编写的。 我国对几何学的研究也有悠久的历史。在公元前一千年前,在我国的黑陶文化时期,陶器上的花纹就有菱形、正方形和圆内接正方形等许多几何图形。公元前五百年,在墨翟所著的《墨经》里有几何图形的一些知识。在《九章算术》里,记载了土地面积和物体体积的计算方法。在《周髀算经》里,记载了直角三角形的三边之间的关系。这就是著名的“勾三股四弦五”的勾股定理,也称为“商高定理”。商高发现了直角三角形的勾股定理。祖冲之的圆周率也是著称世界的。还有我国古代数学家刘徽、王孝通等对几何学都作出了重大的贡献。 随着工农业生产和科学技术的不断发展,几何学的知识也越来越丰富,研究的方面也越来越广阔。

分行几何学是一本怎么样的书

4,谁能告诉我几何怎么学

努力学吧
几何学 开放分类: 科学、数学 学过数学的人,都知道它有一门分科叫作“几何学”,然而却不一定知道“几何”这个名称是怎么来的。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《龟虽寿》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。 ==简史== 几何学有悠久的历史。最古老的[[欧氏几何]]基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《[[几何原本]]》是公理化系统的第一个范例,对西方数学思想的发展影响深远。 一千年后,[[笛卡儿]]在《[[方法论]]》的附录《几何》中,将[[坐标]]引入几何,带来革命性进步。从此几何问题能以[[代数]]的形式来表达。实际上,几何问题的代数化在[[中国数学史]]上是显著的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。 欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。 几何学的现代化则归功于[[克莱因]]、[[希尔伯特]]等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。 ==古代几何学== 几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。 中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。 ==名称的来历== 几何这个词最早来自于希腊语“γεωμετρ?α”,由“γ?α”(土地)和“μετρε ?ν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。 1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。 ==分支学科== 平面几何 立体几何 非欧几何 罗氏几何 黎曼几何 解析几何 射影几何 仿射几何 代数几何 微分几何 计算几何 拓扑学 参考文献 《世界数学史简编》,梁宗巨,1981年,辽宁人民出版社,第90页~第92页 ==几何学的发展简史== 由于人类生产和生活的需要,产生了几何学。 在原始社会里,人类在生产和生活中,积累了许多有关物体的形状、大小和相互之间的位置关系的知识。例如,古代的人们认识他们的猎物的形状、大小,记住它们的居住地与打猎地之间的距离,以及打猎地在居住地的那个方位。 随着人类社会的不断发展,人们对物体的形状、大小和相互之间的位置关系的认识愈来愈丰富,逐渐地积累起较丰富的几何学知识。 相传四千年前,埃及的尼罗河每年洪水泛滥,总是把两岸的土地淹没,水退后,使土地的界线不分明。当时埃及的劳动人民为了重新测出被洪水淹没的土地的地界,每年总要进行土地测量,因此,积累了许多测量土地方面的知识。从而产生了几何学的初步知识。 后来,希腊人由于跟埃及人通商,从埃及学到了测量与绘画等的几何初步知识。希腊人在这些几何初步知识的基础上,逐步充实并提高成为一门完整的几何学。“几何学”这个词,是来自希腊文,原来的意义是“测量土地技术”。“几何学”这个词一直沿用到今天。 公元前338年,希腊人欧几里德,把在他以前的埃及和希腊人的几何学知识加以系统的总结和整理,写了一本书,书名叫做《几何原本》。1607年,我国的数学家徐光启和西方人利玛窦合作,把欧几里德的《几何原本》第一次介绍到我国。欧几里德的《几何原本》是几何学史上有深远影响的一本书。目前,我们学习的几何学课本多是以《几何原本》为依据编写的。 我国对几何学的研究也有悠久的历史。在公元前一千年前,在我国的黑陶文化时期,陶器上的花纹就有菱形、正方形和圆内接正方形等许多几何图形。公元前五百年,在墨翟所著的《墨经》里有几何图形的一些知识。在《九章算术》里,记载了土地面积和物体体积的计算方法。在《周髀算经》里,记载了直角三角形的三边之间的关系。这就是著名的“勾三股四弦五”的勾股定理,也称为“商高定理”。商高发现了直角三角形的勾股定理。祖冲之的圆周率也是著称世界的。还有我国古代数学家刘徽、王孝通等对几何学都作出了重大的贡献。 随着工农业生产和科学技术的不断发展,几何学的知识也越来越丰富,研究的方面也越来越广阔。

5,介绍一下Calvin Klein BAPE CLOT 这三个品牌

Calvin Klein是美国第一大设计师品牌,曾经连续四度获得知名的服装奖项;旗下的相关产品更是层出不穷,声势极为惊人。 Calvin Klein一直坚守完美主义,每一件Calvin Klein时装都显得非常完美。因为体现了十足的纽约生活方式,Calvin Klein的服装成为了新一代职业妇女品牌选择中的最爱。 Calvin Klein有“Calvin Klein”(高级时装)、“CK Calvin Klein”(高级成衣)、“Calvin Klein Jeans”(牛仔)三大品牌,另外还经营休闲装、袜子、内衣、睡衣、泳衣、香水、眼镜、家饰用品等。 品牌故事 从1968年开始建立自己的公司到现在,Calvin Klein已在时装界纵横了四十年,享有盛名,并被认为是当今“美国时尚”的代表人物。他认为今日的“美国时尚”是“现代、极简、舒适、华丽、休闲又不失优雅气息”,从70年代崛起至今,一贯的现代都会风格深受品味族群的喜爱。Calvin Klein的作品干净、细致剪裁,在典雅、中性色调的布料中,展现一种简洁利落的时尚风貌,这也是Calvin Klein的设计哲学。他说:“我同时发现美式风格的本质也具有国际化的特征。就象纽约,他并不是一座典型的美国城市,而是一座典型的国际都市。伦敦,东京或是汉城也是一样。居住在这些城市的人会对我的设计做出回应,是因为他们的生活和需求都十分相似。现代人不论居住在哪儿,都有其共通性。” 1968年,Calvin Klein首度推出女装大衣,立即受到纽约百货公司的青睐,并下了大量订单,让Calvin Klein知名度大开;之后,Calvin Klein线条干净与造型内敛的设计,不但掳获买家与时尚媒体的肯定,一种舒适愉快的穿衣态度,更奠定日后庞大时尚产业的基础。 Calvin Klein喜欢干净完美的形象,因此也表现在服装中,运用丝、缎、麻、棉与毛料等天然材质,搭配利落剪裁,呈现一种高尚的格调,直到今日也从未改变。Calvin Klein对于时尚的嗅觉相当敏锐,70年代后期,Calvin Klein推出原创的牛仔装系列,以漂亮宝贝布鲁克雪德丝为代言人,并在电视广告上说:“在我和我的Calvin之间什么都没有!”极具挑逗性的话语,立即刺激销量提升。同样地,1982年发表的Underwear内衣系列,搭配极具挑逗形象的广告(如马可华博格),改变全球对内衣的观感,一跃成为众人追求的时尚。香水无疑也是Calvin Klein的代表之作,80年代的Obesession、Eternity与Escape,为Calvin Klein增添许多话题,而1994年首度推出的cK One中性香水与之后的cK be,打破性别藩篱的概念,让品牌事业再攀巅峰。 “极简风格”是Calvin Klein在设计上的“注册商标”,也是现今的流行风潮,可是当“极简风格”不再是一种流行趋势时,他会改变吗?对这种疑问,自信的Calvin Klein曾说"我觉得我的设计哲学更趋向现代主义,我会继续专注于美学一一倾向于强调一种纯粹简单,轻松优雅的精神。我总是试着表现纯净、性感、优雅,而且我也努力做到风格统一,以及忠于我的梦想。我想人们会因此更了解我想要呈现的是什么,他们会欣赏,并积极地回应。 广告是Calvin Klein表现创意的最佳焦点,打从推出以来,强烈视觉印象所呈现的「性感」就一直是Calvin Klein广告的代名词,而Calvin Klein也相当擅长塑造人物形象,经由他一手捧红的超级模特儿如Christy Turlington、Kate Moss两人皆红透半边天。Calvin Klein相当偏爱裸体形象,无论在内衣、时装或香水广告上,经常可见模特儿也全裸或半裸姿态,大肆挑逗的视觉印象,十分性感而不低俗,也因此让Calvin Klein随时保持在流行第一线。 Klein的产品的重要风格之一就是性感,因此在他的广告中这一特点得到了淋漓尽致的发挥:他的广告常采用裸体人像,旨在创造完美的、艺术化的形象;但有时 Klein也会打些擦边球,比如在其内衣广告中启用一名似未成年的女模特摆出带色情意味的露底裤姿势,就引起了颇多争议,还遭到了英国广告标准署的干涉。在Calvin Klein的概念中性感是多种多样的,所以近来他的广告中不见了昔日的骨感与颓废,取而代之的是一群活力四射、青春健康、有着灿烂笑容的年轻人,那份热情的魅力轻易掳获了消费者的心。 Calvin Klein说他要为活跃于社交和家庭生恬,并在其中求取平衡的现代女性设计服装。她们是一群重视心灵,看起来亲切善良,但没有太多时间耗在穿衣镜前的女性。她们想要一种轻松、休闲而优雅的服饰,我相信这就是未来时尚所趋。就外貌来看,Calvin Klein女性,是清新、自然美丽的,不是一种不真实的魅惑力。 2003年,Calvin Klein出现重大转变,因股权出售案,由Italo Zucchelli与Francisco Costa分别担任男女装设计总监,Calvin Klein本人则退居幕后担任设计灵魂人物,并拥有重要的策略及决定权,不过从2004春夏来看,两人仍延续了Calvin Klein的精神,让经典风格永垂不朽
Calvin Klein 简称C.K (1968-USA.) Calvin Klein旗下有Calvin Klein、CK Calvin Klein、Calvin Klein Jeans三大品牌,另外还经营休闲装、袜子、内衣、睡衣、泳衣、香水、眼镜、家饰用品等。 Calvin Klein最令人印象深刻的就是独特的行销手法,从现代的角度重新诠释牛仔裤、内衣裤、香水,全裸或半裸的形象,不断挑逗着观众的视觉,将性感与Calvin Klein品牌形象划上等号,从70、80年代起掀起一阵旋风。 Calvin Klein1942年出生于美国纽约Bronx,1962年从著名的纽约时装学院(F.I.T)毕业后,担任设计助理和自由设计师,1968年创办Calvin Klein品牌。Calvin Klein崇尚极简主义和现代的都会感,大量运用丝、缎、麻、棉与毛料等天然材质,搭配利落剪裁和中性色彩,呈现一种干净完美的形象,也奠定了Calvin Klein的设计基调。设计初期,Calvin Klein推出简单大方的西装和外套,随即受到纽约百货公司的青睐,让Calvin Klein知名度大开;之后,Calvin Klein简单的线条与内敛的设计,创造出一种舒适愉快的穿衣态度,加上因样式简单而具备易于大量生产的优势,深受当时都会中上阶级的品味人士喜爱。 70年代后期,Calvin Klein推出全新的牛仔装系列,以漂亮宝贝布鲁克?雪德丝全裸代言,并在电视广告上说:"在我和我的Calvin之间什么都没有!"极具挑逗性的话语串联起性感与CK牛仔裤,大幅刺激了销售量。之后,1982年发表的Underwear内衣系列,CK又以极具魅惑形象的广告,将内衣从日常生活的必备单品推向众人追求的时尚舞台。香水是Calvin Klein另一项重头戏,80年代的Obesession、Eternity与Escape,为Calvin Klein增添许多话题,而1994年首度推出的cK One中性香水与之后的cK be,更是再次成功挑动性别藩篱的概念,让Calvin Klein再攀巅峰。 2003年,纽约PVH集团并购Calvin Klein ,Calvin Klein本人退居幕后,改由Italo Zucchelli与Francisco Costa出任男女装设计总监,不过从近一两年新设计师推出的设计系列来看,两人依然承续了Calvin Klein一贯的都会简约精神,维持CK经典不衰。

文章TAG:克莱因股票什么意思克莱因  股票  什么  
下一篇